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It is proved that a steady-state flow has an extremal kinetic energy in com-
parison with "equivorticity”™ flows. This result is applled to investigate
the stablility of steady-state flows: 1f the extremum is a2 minimum or a maxi-
mum, then the flow is stable, 1.e. a small change in the initial velocity
field causes only a small change in the velocity fleld for all time. To
determine the nature of the extremum (maximum, minimum, etc.) a second vari-
atlon 1s explicitly calculated. For the case of plane flows, sufficient
conditions of the stability with respect to small finite perturbatlions are
found. These conditions are close to the necessary ones.

1. PFinite=-dimensional model. We shall show that the equations of the
three-dimensional hydrodynamics of an 1deal fluid are infinite-dimensional
analog to the following finite-dimensional situation. In the space xX= x,...
«e.5 Xz let there be given a system of ordinary differentlal equations

= /(x) (1.1)
I, . In addition, we shall assume that a "k~
dimensional structure" 1s glven in the space
£ X (Fig.1), i.e. that the space 1s decomposed
into %x-dimensional "sheets" (in the figure:
n=3, =2 ). We shall assume that the
structure is invariant with respect to the
! system (1.1), 1.e. that a trajectory x(¢)
which begins on the sheet & still remains
on 1t. We shall call a point x of the sheet
F regular, if in the neighborhood of this point there exlists a system of

Fig. 1

coordinates ¥, ,..., Y. in which the sheets are given by the equations
Yks1 = Ck+1 s + - -» Yn = Cn.  In the whole, however, the sheets need not be given
by equations (for example, a sheet may be everywhere dense).

We shall assume, finally, that the system {1.1) has a first integral £(x).
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Threetdimensional steady-state flows of an 1ldeal fluid 1003

We shail consider a local conditional extremum of the function F on the
sheet 7 . We shall assume that it occurs at a regular point X, and that
the quadratic form 4?F 1s nonsingular on the sheet F . The following
three theorems are easily proved (cf.[1]),

Theoren 1.1. The point X, is the equilibrium position of the
system (1.1) .
f(x) =0

Theorem 1.2. If the extremum 1s a maximum or a minimum, then the
equilibrium position X, is stable with respect to small finite perturbations.

Theoren 1.3. The spectrum of the problem of small oscillations
corresponding to (1.1) A = AL (4 = of /| 0x in X;) 1is symmetric with
respect to the real and imaginary axes of A .

The hydrodynamic analog of these theorems will be formulated below. They
are, 1n fact, corollaries of the general theorems on L1 geodeslc groups pro-
vided partially with an invariant metric (cf.[2]). However, an independent
proof is given here which makes use neither of L1 groups, nor even of the
existence and unlqueness theorems which correspond to the partial differen-
tial equations. From a mathematical point of view, these theorems will be
"a priori"” equalities and estimates.

2, Notation. Let D be a domain, bounded by the fixed surface T , in
a three-dimensional Euclidean space; let Vv be the velocity fleld of an
ideal fluid (indéompressible, with density equal to 1 , inviscild, exterior to
a nonpotential mass force fleld) which fills the volume p ; and let p be
the pressure.

The Euler equation

%-F(V-V)V:—gradp, divv=0, vn=0 oI (21)

has as a corollary the Bernoulll equatlon

%Vt—zvxr——gradk, r =rotv, A=p+1/v? (2.2)
Hence, in view of the identity
rot (A x B) = {AB} 4+ AdivB—RBdivA (2.3)
there follows
Or [ 9t = {vr} (2.4)

Here {AB} 1s the Polsson bracket of the vector flelds
{ABYi= (04, /0z;) B;— (0B; 9z;) A,

If ¢ 1s a smooth mapping of x - g(x) , then we shall denote by g% the
corresponding mapping of the vectors

(8*8)i = 2 (9g:/ 0z;) §;
3, BEBquivortiocity fields., In order to formulate the law of coservation

of vorticity in a form suitable for later use, we shall consider two vector
fields v and v’ in D
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divv=40, divv'=0, (v.n)=0, v.n=0 o T
Pefinltion 3.1. The fields v and ¥’ are equlvorticity
fields 1f there exists a smooth, volume preserving, mapping ¢ of the domain

D into itself such that (*)
§>vdx~.: §> v dx (3.1)

Y 8y
for every closed contour y in the domain 2 .
The law of conservation of vorticity now takes the following form. Let
v(x,t)_be the velocity field of the ideal fluid of (2.1).

Theorem 3.1. The fields wv(X,0) and v(x,%) are fields of equi~
vortieity, In fact, let x(t¢) be the trajectory of a fluid particle. The
mapping ¢ 1s then that which transforms x%X{0) intoc x(¢) .

We shall now consider the Euler equation (2.1) as the system (1.1) in an
infinite~dimensional space of the vector fields v(x) (where div v = 0 and
ven=0 on T ). We shall show that this system has the characteristics
of the system {1.1). 1In the space of the fields v(x) the following struc~
ture 1s specified: two fields belong to the same sheet 1f they are equl-
vorticity fields. According to Theorem 3.1, this structure 1s invariant.
Steady~state flows are "equilibrium position"” of the system. Finally, the
‘Euler equation (2.1) has a first integral of the energy

2F = SSS vidz

In order to transfer the results of Section 1 to the hydrodynamlc equa-~
tions (2.1) it is necessary to calculate the first and second variations of
the function £ on the sheet p .

4, Variational prinoiple (**). The following fundamental Theorem is the
analog of Theorem 1.1.

Theorem 4.1, The steady-state flow v{(x) has an extremal energy
in comparison with all close equivorticity flows w'(x) .

By closeness here 1z meant closeness "with respect to the sheet", 1l.e,

#) The mapping ¢ transforms the vorticity of v into vorticity of v’
g¥rot v = rot v’ 3.2)
Actually, if € , mn 1s an infinitesimal parallelogram, then, since
det %=1 ,
EXnerot v = (g*B)X(g*n)- (g*rat v)
and corresponding to (3.1)
(Exn-rot v) = (g*E)*(g*n)-rot v’

If the domain D is not simply connected, then condltion (3.1) is stronger
.than (3.2).

#%) Another variational principle relating to unsteady flows has Dbeen deter~
mined and applied in the investigation of stability y Fjlertoft [3].
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v’ (x) 1s considered to be close to v(x) 1f the corresponding mapping ¢ 1in
(3.1) is close to the identity mapping. To determine the closeness of ¢

to the identity mapping we shall introduce the "coordinates” [ into the
space ¢ in the following way.

Let £(x) be a vector field in D such that

divi=0, fon=0 on I
Definition 4.1. Lt g =expft be amapping of D into
itself, determined by the solutions x(¢) of the ordinary differential equa-
tions x = f (x) according to Formula g (x(0)) = x ().

The fleld v’ will be considered to be close to ¥ if the "coordinates”
J of the transformation ¢ in (3.1) are small. In this case, the velocity
perturbation dv = v’ — v, 1s also small. The relation between 5v and f
is given by the following Formula (4.2).

Lemma 4.1. If for every closed contour y in D

§) vdx=(§)v’dx, divv=0, divv' =0 (4.1)
g-¢Y Y
then
v —v ==t(fxr) 4 a2 x {fr} + O (t%) + grad o (4.2)
where o 1s a single-valued function and » = rot v .
Proof of t he Lemma . According to the Stokes formula
d 1
v <§ vdx=—wggrds= (§ fxrdx (4.3)
- Y g_ Y

Since the Jacobian of U_t* is equal to unity, we then have

@ fxrdx= S g 1 (g-x) x g/*r (g-4x) dx (4.4)
8-y b

But, according to the definition of g: we have g*f (g X) = f (X). There-

fore, (4.3) and (4.4) give
= <§> vdx =§>fxr(t)dx (4.5)
8- tY Y
The field p(t) here is defined by Formula
r(x, t) = g (8-%) (4.6)
Differentiating (4.6), we find
d
Slo=W @ =r+t+0@) (4.7)
But, according to condition (4.1),
T(iit— § vdx = %—:-dx, V==V (4.8)
g_1Y Y

Integrating (4.5) and (4.6) with respect to t , we find from (4.6)
t

<§>(v'—v)dx =<S>Sf><[1-+{f, r}t 4+ O ()] dt dx

Y 0
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which is equivalent to (4.2).

Proof of the basic Theorem . If v’ i1s a equi-

vorticity flow close to the steady-state flow v , then according to (4.2)
the first varlation 1s

v =1xr 4 grada

Therefore,

Ok = SSSV-Gvdx = SSSV-(]‘ xr 4 grada)dx = SSS[f-(r X V)4 v.grad a] dx

For a steady-state flow, according to (2.2),

rxv=—gradA
Therefore,

OF = SSS (v-grada—1f-grad M)dx =0
This result is obtained by integrating by parts, taking into account
Equalities : ;
d divv=0, divi=0; (vo).=0, (fin)|p=0

The Theorem is proved.

5. Pormula for the second variation. According to Lemma 4.1
v =v 4 0v+ v+ O

dv=1fxr+graday, &V =_[fx{ir}]+ grado,
Correspondlingly,

26°E — SSS [(6v)%—|—2(v-62v)] dy = SSS [(zsv)2 4 vefx {fr} + 2v.grad a,] dz

Integrating the last term by parts, we obtain the following form for the
second variation of the energy Z o6n the "sheet" F of the fields having
equivorticity with v , in terms of the varlables f introduced in Sectlon

* 28°E — SSS (8V)2 +v x F{f-r} dz (5.1)

This expression is quadratic with respect to £ , since &v , linearly
expressed 1In terms of f , 1is
8v=1fxr- grada,
where o, 1s determined from div v =10 and (6V-n)]p==() and, therefore,
is linearly dependent on £ . We also observe that according to Formula

(2.3) {fr} = or.
The following theorem is the analog of Theorem 1.2.

where

Theorem 5.1. If the quadratic form (5.1) is of fixed sign, then
the flow v 1is stable with respect to small finite perturbations. By a
small perturbation here 1s meant one of which év and £, 1.e. v and or
or form |8%%| , are small.

The form (5.1) represents the first integral to the linear problem of
small oscillations close to a steady-state flow v . In accordance with
Theorem 1.3, the spectrum of this problem 1s symmetric with respect to both
axes. Hence —
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Theorenmn 5.2. If some perturbation of the steady-state flow v
is damped, then some other perturbation is amplifled and the flow v 1is
unstable.

The author was not able to find a flow v for which the quadratic form
6°F was of fixed sign for three-dimensional perturbations. However, in
sﬁecifically symmetric cases Theorem 5.1 gives simple stabllity criteria.

6. Supplementary integrals., Generalizing Theorem 1.2, we shall assume
that the Euler equation (1.2) has a first integral ¥ such that for a
steady-state flow v

3M = S A-3vdz (A x ot v = grad a) (6.1)
The assumption (6.1) 1s satisfied in the followling three examples.

Example 6.1. For the energy integral M,= ¥ we have

A = v = [vxrot v] = grad A
according to (2.2).

Example 6.2. If the domain 2 and the flow Vv are invariant
wlth respect to displacements along the x=-axis, the integral

My= gggv-exd:cdy dz

is then preserved.
For it A = e, and A xrotv = grad (v-ey).
Example 6.3, If the domain J and the flow ¥ are invariant
with respect to rotations about the z-axis, then
My= SSS (vxR-e,)dz dydz
is preserved, where R 1s the radius vector of the point x, ¥y, # . In this

case A=Rxe, Axrotv=grad(vxR-e,)

Theorem 6.1. The value of the integral ¥ over the velocity
field of a steady-state flow v 1s an extremal in comparison with the values
over close equivorticity fields , provided that M satisfies condition (6.1).

The proof is identical to the proof of Theorem 1.2. The corresponding
formulas of the second variation have the form

202 M ,— QQS (exx f) {fr} dx dy dz (6.2)

28:M,= \({ (R x e.x1) {r} dr dy dz (6.3)
Fixed sign behavior of some linear combination
AOTM, A A8M, - A0 M,
is sufficlient for the stability of v .

We shall 1llustrate the applicatlion of Theorem 5.1, Formulas (5.1),(6.2)
and (6.3) in an example of plane flows.
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7. Plane perturbations of plane flows. ILect the flow v have a stream
function ¥{x,y) such that

V=%, —¥%, 0; r=0, 0, —Ay (7.1)
Substituting (7.1) into (5.1), we obtain after a brief calculation, taking
into consideration that {fr} = 6r, the formula given in [1]

28°E — SS 6w+ v“;‘fp (ér)ﬂ dzdy (7.2)

From (7.2) and Theorem 5.1 there follows

Corollary 7.1 (cf.[1]). In any domain plane flows with a con-

cave veloclty profile (le / VAq; >O) are stable with respect to finite
plane perturbations.

We shall refer to specifically symmetric flows. The case of plane-parallel
flows {the Rayleigh theorem) is considered in detail in {1]. We shall con-
sider the flow 1n the annulus between concentric clrcles. After a brief cal-
culation, Formula (6.3) is reduced in the plane case to the form

1 2
28°M, = J%% (5r)? (7.3)
From (7.3} and Theorem 5.1 there follows

Corollary 7T.2. A plane circular flow in a circular annulus 1s
stable with respect to small finite plane perturbations 1f the vorticity
raries monotonously with the radius.

Actually, if the sign of VR2/ VAW is preserved, then the form
P

82H = 8°E + AO0M,
is positive definite for suitable A .

Finally, we note that the investigation of parallel flows with a single
inflection point carried out in [1], owing to Formula (7.3), remains in
effect for the case of circular flows.
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