
VARIATIONAL PRINCIPLE FOR THREE-DIMENSIONAL 

STEADY-STATE FLOWS OF AN IDEAL FLUID 

(VARIATSIODSIQPI PRINTSIP DLIA TRE- 
STATSIW- m-1 IIXAL'NOI ZIXIDKOSTI) 

Pm vo1.29, I@ 5, 1965; pp. 846-851 

V.I. ARNOL'D 

(Moscow) 

(Received June 14, 1965) 

It is proved that a steady-state flow has an extremal kinetic energy in com- 
parison with wequlvortlclty" flows. This result Is applied to Investigate 
the stability of steady-state flows: if the extremum is a minimum or a maxi- 
mum, then the flow is stable, I.e. a small change in the Initial velocity 
field causes only a small change In the velocity field for all time. To 
determine the nature of the extremum (maximum, minimum, etc.) a second varl- 
atlon is explicitly calculated. For the case of plane flows, sufficient 
conditions of the stability with respect to small finite perturbations are 
found. These conditions are close to the necessary ones. 

1. Blnltr-dlmonrlonal modrl. We shall show that the equations of the 

three-dimensional hydrodynamics of an ideal fluid are infinite-dimensional 

analog to the following finite-dimensional situation. In the space x - x1,... 

. . . . x, let there be given a system of ordinary differential equations 

x' = f(x) (1.9 

In addition, we shall assume that a vk- 

dimensional structure" Is given in the space 

' B l 

,';G 

,x (Fig 1) I e . , . . that the space Is decomposed 
Into k-dimensional "sheets" (in the figure: 

n=3, k=2). We shall assume that the 

structure is invariant with respect to the 

3 system (l.l), I.e. that a trajectory X(t) 

Fig. 1 
which begins on the sheet F still remains 

on It. We shall call a point x of the sheet 

F regular, If In the neighborhood of this point there exists a system of 

coordinates &r-.*9 Y, In which the sheets are given by the equations 

yh_+1 = Ck+t ( . 1 ., yn = c,,. In the whole, however, the sheetsneed not be given 

by equations (for example, a sheet may be everywhere dense). 

We shall assume, finally, that the system (1.1) has a first integral E(X). 
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Three’-dlmcnslonal steady-state 1-101:s of an ideal fluid 1003 

We shail consider a local conditional extremum of the function E on the 

sheet F . We shall assume that it occurs at a regular point x, and that 

the quadratic form d2E is nonsingular on the sheet F . The following 

three theorems are easily proved (cf.[l]). 

Theorem 1.1. The point a is the equilibrium position of the 

system (1.1) 
f (x0) = 0 

Theorem 1.2. If the extremum is a maximum or a minimum, then the 

equilibrium position x, is stable with respect to small finite perturbations. 

Theorem 1.3. The spectrum of the problem of small oscillations 
corresponding to (1.1) J!E = hc (A = df / dX in X,,) Is symmetric with 

respect to the real and imaginary axes of X . 

The hydrodynamic analog of these theorems will be formulated below. They 

are, in fact, corollaries of the general theorems on Li geodesic groups pro- 

vided partially with an invariant metric (cf.[2]). However, an independent 

proof is given here which makes use neither of Ll groups, nor even of the 

existence and uniqueness theorems which correspond to the partial differen- 

tial equations. From a mathematical point of view, these theorems will be 

lla priori" equalities and estimates. 

2. Notation. Let D be a domain, bounded by the fixed surface P , in 

a three-dimensional Euclidean space; let V be the velocity field of an 

ideal fluid (incompressible, with density equal to 1 , inviscid, exterior to 

a nonpotential mass force field) which fills the volume D ; and let p be 

the pressure. 

The Euler equation 

2 + (v-V)v= -gradp, divv = 0, v-n = 0 00 r (2.1) 

has as a corollary the Bernoulli equation 

-=vxr-gradh, at r =rotv, h = p + J/$VS P-2) 
Hence, in view of the identity 

rot(AxB)={AB}+AdivB-BdivA 

there follows 
dr / dt = {vr} 

Here {AB) is the Poisson bracket of the vector fields 

{AB}<= 27 (dAi / dzj) Bj - (dBi / asj) Aj 

(2.3) 

(2.4) 

If U Is a smooth mapping of x + O(X) , then we shall denote by g* the 

corresponding mapping of the vectors 

(g*S)i= x((agi/azj)Sj 

3. Equlvortiolty ilrldr, In order, to formulate the law of coservation 
of vortlclty In a form suitable for later use, we shall consider two vector 

fields v and v' In D 
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divv= 0, divv’= 0, (v-n) = 0, Y’.II =2 0 on I’ 

Definition 3.1. The fields v and V' are eauivorticity 

fields if there exists a smooth, volume preserving, mapping g of the domain 

D into itself such that (*) 
+dz= 5) v’dx (3.1) 
Y m 

for every closed contour y in the domain D . 

The Law of conservation of vorticity now takes the following form. Let 
v(x,t)_be the velocity field of the Ideal fluid of (2.1). 

T h e o P e m 3.1. The fields v(%,O) and V(%,t) are fields of equi- 

vorticity. In fact, let x(t) be the trajectory of a fluid particle. The 

mapping g is then that which transforms x(o) into x(t) . 

We shall now consider the Euler equation (2.1) as the system (1.1) in an 

infinite-dimensional space of the vector fields v(X) (where dlv v = 0 and 

V-XI- 0 on f ). We shall show that this system has the characteristics 

of the system (1.1). In the space of the fields V(X) the following struc- 

ture Is specified: two fields belong to the same sheet if they are equi- 

vorticity fields. According to Theorem 3.1, this structure is invariant. 

Steady-state flows are "equilibrium position" of the system. Finally, the 

'Euler equation (2.1) has a first integral of the energy 

2E = sss va dx 

In order to transfer the results of Section 1 to the hydrodynamic equa- 

tions (2.1) It is necessary to calculate the first and second variations of 

the function E on the sheet F . 

4. Vm&.rtld prlnolplo (**). The following fundamental Theorem is the 
analog of Theorem 1.1. 

T h e o r e m 4.1. The steady-state flow v(x) has an extremal energy 

In comparison with all close equlvorticity flows V’(X) . 

By closeness here is meant closeness "with respect to the sheet", i.e. 

*) The mapping 67 transforms the vorticity of v into vorticity of V’ 

g”rot v = rot v’ (3.2) 

Actually, If 5 , q is an infinitesimal parallelogram, then, since 
det f7*=1 , 

$Xrl.rot v = (g*~)x(~*q).(g*ro~ v) 

and corresponding to (3.1) 
(gxQ.rot v) = (g*~)x(g*~).rotv' 

If the domain Dis not simply coimected, then condition (3.1) is stronger 
-than (3.2). 
**) Another variational principle relating to unsteady flows has been deter- 
mined and applied in the investigation of stability y Fjertoft [ 31. 
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V'(x) Is considered to be close to v(x) If the corresponding mapping 67 In 

(3.1) is close to the Identity mapping. To determine the closeness of 0 

to the identity mapping we shall introduce the "coordinates" .f Into the 

space Q In the following way. 

Let i(X) be a ve,ctor field in D such that 

divf = 0, f.n - 0 on r 
Definition 4.1. L t gt = exp ft be a mapping of D Into 

itself, determined by the solutions x(t) of the ordinary 

tlons x = f (x) according to Formula g (x(0)) = x(t). 

The field V’ will be considered to be close to V If 

/ of the transformation B lh (3.1) are small. In this 

perturbation 6~ = y' - y. Is also small. The relation 

Is given by the following Formula (4.2). 

differential equa- 

the "coordinates" 

case, the velocity 

between 5:~ and i 

L e m m a 4.1. If for every closed contour y In D 

T§ 
vdx = 

$ 
v’ dx, divv= 0, div v’ = 0 (4.1) 

A?- t7 Y 
then 

v' -v = t(f x r) + ‘/# f x {fr} + 0 (t”) + grad a (4.2) 
where c Is a single-valued function and r = rot V . 

Proof of the Lemma . According to the Stokes formula 

d 
dt $ 

vdx= --&\\rds= $ fxrdx (4.3) 
8- tY L t-i 

Since the Jacobian of Q_,* Is equal to unity, we then have 

Y§ 
f x r dx = 

s 
gt*f (g+x) x g,*r (g-lx) dx (4.4) 

g- tr Y 
But, according to the definition of gt we have gt*f (g-t X) = f(X). There- 

fore, (4.3) and (4.4) give ,j 

dt 
vdx = f x r (t) dx (4.5) 

&?-t-f 1 

The field r(t) here Is defined by Formula 

r(x, t) = g,*r(g-ix) 

Differentiating (4.6), we find 

(4.6) 

= {frl, r (t) = r + {fr} t + 0 (t”) W) 
But, according to condition (4.1), 

d 

dt vdx = gdx, v’ J1=fl = v (4.8) 
g_ 1y Y 

Integrating (4.5) and (4.6) with respect to t , we find from (4.6) 

$(v’-~)dx=$~fx[r+{f,r}t+O(f~)]dtdx 
Y Y 0 
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which is equivalent to (4.2). 

Proof of the basic Theorem . If v' Is a equi- 

vortlcity flow close to the steady-state flow v , then according to (4.2) 

the first variation is 

Therefore, 
h=fxr+grada 

6li.c * sss v-8vdx = sss v.(fxr+grada)dx= * 
sss 

[f-(r x v) + v.grada] dx 

For a steady-state flow, according to (2.2), 

rxv=-ggradh 
Therefore, 

6E = 
sss 

(vmgrada-ffgradh):dx= 0 

This result Is obtained by integrating by parts, taking into account 

Equalities divv = 0, divf = 0; (v-4 Ir = 0, (f9 n) Ir = 0 

The Theorem is proved. 

5. Bornmlr for the rroond varlatlon. According to Lemma 4.1 

v' = v + 6v + 6% + O(f") 
where 

6v=fxr+gradal, a2v = $ [f x {fr}] + grad a, 

Correspondingly, 

2b2E = l$ [(Sv)%+2(v.S%)] dJ: = [\\ [(b~)~ + v*f x {fr} + 2v-grad a2] dz 

Integrating the last 

second variation of the 

equlvortlclty with v , 
4 : 

JJJ L 

term by parts, we obtain the following form for the 

energy E bn the "sheet" F of the fields having 

in terms of the variables f introduced In Section 

2d2E = 
sss 

(6~)~ +v x f {f-r} dx (54 

This expression Is quadratic with respect to I , since 6~ , linearly 

expressed In terms of f , is 
Bv=fxr+gradal 

where cl is determined from div 8~ =O and (6ven)jr= 0 and, therefore, 

is linearly dependent on T . We also observe that according to Formula 

(2.3) {fr} = 8r. 

The following theorem Is the analog of Theorem 1.2. 

T h e o r e m 5.1. If the quadratic form (5.1) Is of fixed sign, then 

the flow v is stable with respect to small finite perturbations. By a 

small perturbation here Is meant one of which 6v and i , I.e. bv and br 

or form I @El , are small. 

The form (5.1) represents the first Integral to the linear problem of 

small oscillations close to a steady-state flow v . In accordance with 

Theorem 1.3, the spectrum of this problem is symmetric with respect to both 

axes. Hence - 
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T h e o r e m 5.2. If some perturbation of the steady-state flow v 

is damped, then some other perturbation is amplified and the flow v is 

unstable. 

The author was not able to find a flow V for which the quadratlc form 

da6 was of fixed sign for three-dimensional perturbations. However, in 

s$ecifically symmetric cases Theorem 5.1 gives simple stability criteria. 

6. Supplrmmtary integralr. Generalizing Theorem 1.2, we shall assume 

that the Euler equation (1.2) has a first integral M such that for a 

steady-state flow v 
6M= 

sss 
A+bdx (A x rot v = grad a) (6.4) 

The assumption (6.1) is satisfied in the following three examples. 

E x a m p 1 e 6.1. For the energy integral &= E we have 

A = v = [vxrot vl = grad h 
according to (2.2). 

E x a m p 1 e 6.2. If the domain D and the flow v are invariant 

with respect to displacements along the x-axis, the integral 

Ma= sss 
VW e,dx dy dz 

is then preserved. 

For it A = e, and A x rot v = grad (v.eJ. 

E x a m p 1 e 6.3. If the domain D and the flow v are invariant 

with respect to rotations about the a-axis, then 

MS= (vxR,e,)dxdydz 
sss 

is preserved, where R Is the radius vector of the point X, y, B . In this 

case 
A=Rxq, Axrotv== grad (v x R-e,) 

T h e o P e m 6.1. The value of the integral M over the velocity 

field of a steady-state flow v is an extremal In comparison with the values 

over close equivortlclty fields , provided that M satisfies condition (6.1). 

The proof is identical to the proof of Theorem 1.2. The corresponding 

formulas of the second 

Fixed sign behavior 

variation have the form 

2PM,= \\\ (e,x f) {fr)dxdgdz 

2PM3= ii\ ( R xe,xf){fr)d~:dydz 
t . 

of some linear combination 

?@M, $- h,iSW, -i- ~~~2~~ 

(6.2) 

(6.3) 

is sufficient for the stability of v . 

We shall illustrate the application of Theorem 5.1, Formulas (5.1),(6.2) 
and (6.3) In an example of plane flows. 
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7. Plus perturbatfonr oi plana flow. Let the flow v have a stream 

function +(x,y) such that 

V=$y, -9x, 0; r=O, 0, -AI+ w 
Substituting (7.1) Into (5.1), we obtain after a brief calculation,taking 

into consideration that {fr} = &, the formula given in [1] 

262E = (8v)2+ 

From (7.2) and Theorem 5.1 there follows 

(7.2) 

Corollary 7.1 (cf.Cl]). In any domain plane flows with a con- 

cave velocity profile (V+ / VA* >O) are stable with respect to finite 

plane perturbations. 

We shall refer td specifically symmetric flows. The case of plane-parallel 

flows (the Rayleigh theorem) is considered in detail in [l]. We shall con- 

sider the flow In the annulus between concentric circles. After a brief cal- 

culation, Formula (6.3) is reduced in the plane case to the form 

(7-3) 
From (7.3) and Theorem 5.1 there follows 

Corollary 7.2. A plane circular flow in a circular annulus is 

stable with respect to small finite plane perturbations If the vortlcity 

raries monotonously with the radius. 

Actually, if the sign of VRs / VA* is preserved, then the form 

d'=H = 6"E + WM, 

is positive definite for suitable X . 

Finally, we note that the investigation of parallel flows with a single 

inflection point carried out in cl], owing to Formula (7.3), rema&s in 
effect for the case of circular flows. 
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